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Abstract
In this work we investigate the problem of automating the
development of adaptive chosen ciphertext attacks on sys-
tems that contain vulnerable format oracles. Unlike pre-
vious attempts, which simply automate the execution of
known attacks, we consider a more challenging problem:
to programmatically derive a novel attack strategy, given
only a machine-readable description of the plaintext veri-
fication function and the malleability characteristics of
the encryption scheme. We present a new set of algo-
rithms that use SAT and SMT solvers to reason deeply
over the design of the system, producing an automated
attack strategy that can entirely decrypt protected mes-
sages. Developing our algorithms required us to adapt
techniques from a diverse range of research fields, as well
as to explore and develop new ones. We implement our
algorithms using existing theory solvers. The result is a
practical tool called Delphinium that succeeds against
real-world and contrived format oracles. To our knowl-
edge, this is the first work to automatically derive such
complex chosen ciphertext attacks.

1 Introduction

The past decades have seen enormous improvement in
our understanding of cryptographic protocol design. De-
spite these advances, vulnerable protocols remain widely
deployed. In many cases this is a result of continued
support for legacy protocols and ciphersuites, such as
TLS’s CBC-mode ciphers [7, 64], export-grade encryp-
tion [4, 9, 19], and legacy email encryption [59]. How-
ever, support for legacy protocols does not account for
the presence of vulnerabilities in more recent protocols
and systems [36, 42, 47, 72, 74].

∗These authors contributed equally to the work.

In this work we consider a specific class of vulner-
ability: the continued use of unauthenticated symmet-
ric encryption in many cryptographic systems. While
the research community has long noted the threat of
adaptive-chosen ciphertext attacks on malleable en-
cryption schemes [17, 18, 56], these concerns gained
practical salience with the discovery of padding ora-
cle attacks on a number of standard encryption pro-
tocols [6, 7, 13, 22, 30, 40, 51, 52, 73]. Despite repeated
warnings to industry, variants of these attacks continue to
plague modern systems, including TLS 1.2’s CBC-mode
ciphersuite [5, 7, 48] and hardware key management to-
kens [10, 13]. A generalized variant, the format oracle
attack can be constructed when a decryption oracle leaks
the result of applying some (arbitrarily complex) format-
checking predicate F to a decrypted plaintext. Format
oracles appear even in recent standards such as XML
encryption [42, 45], Apple’s iMessage [36] and modern
OpenPGP implementations [47, 59]. These attacks likely
represent the “tip of the iceberg”: many vulnerable sys-
tems may remain undetected, due to the difficulty of
exploiting non-standard format oracles.

From a constructive viewpoint, format oracle vulnera-
bilities seem easy to mitigate: simply mandate that pro-
tocols use authenticated encryption. Unfortunately, even
this advice may be insufficient: common authenticated
encryption schemes can become insecure due to imple-
mentation flaws such as nonce re-use [21, 43, 46]. Setting
aside implementation failures, the continued deployment
of unauthenticated encryption raises an obvious ques-
tion: why do these vulnerabilities continue to appear
in modern protocols? The answer highlights a discon-
nect between the theory and the practice of applied cryp-
tography. In many cases, a vulnerable protocol is not
obviously an exploitable protocol. This is particularly
true for non-standard format oracles which require en-
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Figure 1: Output of a format oracle attack that our algo-
rithms developed against a bitwise padding check ora-
cle Fbitpad (see §5.2 for a full description). The original
ciphertext is a valid 128-bit (random) padded message
encrypted using a stream cipher. Each row of the bitmap
represents a malleation string that was exclusive-ORed
with the ciphertext prior to making a decryption query.

tirely new exploit strategies. As a concrete example, the
authors of [36] report that Apple did not repair a com-
plex gzip compression format oracle in the iMessage
protocol when the lack of authentication was pointed out;
but did mitigate the flaw when a concrete exploit was
demonstrated. Similar flaws in OpenPGP clients [36, 59]
and PDF encryption [55] were addressed only when re-
searchers developed proof-of-concept exploits. The un-
fortunate aspect of this strategy is that cryptographers’
time is limited, which leads protocol designers to dis-
count the exploitability of real cryptographic flaws.

Removing the human element. In this work we investi-
gate the feasibility of automating the design and devel-
opment of adaptive chosen ciphertext attacks on symmet-
ric encryption schemes. We stress that our goal is not
simply to automate the execution of known attacks, as
in previous works [45]. Instead, we seek to develop a
methodology and a set of tools to (1) evaluate if a system
is vulnerable to practical exploitation, and (2) program-
matically derive a novel exploit strategy, given only a
description of the target. This removes the expensive
human element from attack development.

To emphasize the ambitious nature of our problem, we
summarize our motivating research question as follows:

Given a machine-readable description of a for-
mat checking function F along with a descrip-
tion of the encryption scheme’s malleation

properties, can we programatically derive a
chosen-ciphertext attack that allows us to effi-
ciently decrypt arbitrary ciphertexts?

Our primary requirement is that the software responsi-
ble for developing this attack should require no further
assistance from human beings. Moreover, the developed
attack must be efficient: ideally it should not require sub-
stantially more work (as measured by number of oracle
queries and wall-clock execution time) than the equiva-
lent attack developed through manual human optimiza-
tion.

To our knowledge, this work represents the first at-
tempt to automate the discovery of novel adaptive cho-
sen ciphertext attacks against symmetric format oracles.
While our techniques are designed to be general, in prac-
tice they are unlikely to succeed against every possible
format checking function. Instead, in this work we initi-
ate a broader investigation by exploring the limits of our
approach against various real-world and contrived format
checking functions. Beyond presenting our techniques,
our practical contribution of this work is a toolset that
we name Delphinium, which produces highly-efficient
attacks across several such functions.

Relationship to previous automated attack work. Pre-
vious work [12, 26, 58] has looked at automatic discovery
and exploitation of side channel attacks. In this setting, a
program combines a fixed secret input with many “low”
inputs that are (sometimes adaptively) chosen by an at-
tacker, and produces a signal, e.g., modeling a timing
result. This setting can be viewed as a special case of
our general model (and vice versa). Like our techniques,
several of these works employ SAT solvers and model
counting techniques. However, beyond these similarities,
there are fundamental differences that manifest in our
results: (1) in this work we explore a new approach based
on approximate model counting, and (2) as a result of this
approach, our results operate over much larger secret do-
mains than the cited works. To illustrate the differences,
our experimental results succeed on secret (message) do-
mains of several hundred bits in length, with malleation
strings (“low inputs”) drawn from similarly-sized do-
mains. By contrast, the cited works operate over smaller
secret domains that rarely even reach a size of 224. More-
over, our format functions are relatively complex. It is
an open question to determine whether the experimen-
tal results in the cited works can be scaled using our
techniques.

Our contributions. In this work we make the following
contributions:

• We propose new, and fully automated algorithms
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for developing format oracle attacks on symmetric
encryption (and hybrid encryption) schemes. Our
algorithms are designed to work with arbitrary for-
mat checking functions, using a machine-readable
description of the function and the scheme’s mal-
leation features to develop the attack strategy.

• We design and implement novel attack-development
techniques that use approximate model counting
techniques to achieve significantly greater efficiency
than previous works. These techniques may be of
independent interest.

• We show how to implement our technique prac-
tically with existing tools such as SAT and SMT
solvers; and propose a number of efficiency opti-
mizations designed to improve performance for spe-
cific encryption schemes and attack conditions.

• We develop a working implementation of our tech-
niques using “off-the-shelf” SAT/SMT packages,
and provide the resulting software package (which
we call Delphinium), an artifact accompanying this
submission, as an open source tool for use and fur-
ther development by the research community.

• We validate our tool experimentally, deriving several
attacks using different format-checking functions.
These experiments represent, to our knowledge, the
first evidence of a completely functioning end-to-
end machine-developed format oracle attack.

1.1 Intuition
Implementing a basic format oracle attack. In a typical
format oracle attack, the attacker has obtained some tar-
get ciphertext C∗ = EncryptK(M∗) where K and M∗ are
unknown. She has access to a decryption oracle that, on
input any chosen ciphertext C, returns F(DecryptK(C))∈
{0,1} for some known predicate F. The attacker may
have various goals, including plaintext recovery and
forgery of new ciphertexts. Here we will focus on the
former goal.

Describing malleability. Our attacks exploit the mal-
leability characteristics of symmetric encryption schemes.
Because the encryption schemes themselves can be com-
plex, we do not want our algorithms to reason over the en-
cryption mechanism itself. Instead, for a given encryption
scheme Π, we require the user to develop two efficiently-
computable functions that define the malleability prop-
erties of the scheme. The function MaulΠciph(C,S) →
C′ takes as input a valid ciphertext and some opaque
malleation instruction string S (henceforth “malleation

string”), and produces a new, mauled ciphertext C′. The
function MaulΠplain(M,S)→M′ computes the equivalent
malleation over some plaintext, producing a plaintext (or,
in some cases, a set of possible plaintexts1). The essen-
tial property we require from these functions is that the
plaintext malleation function should “predict” the effects
of encrypting a plaintext M, mauling the resulting cipher-
text, then subsequently decrypting the result. For some
typical encryption schemes, these functions can be sim-
ple: for example, a simple stream cipher can be realized
by defining both functions to be bitwise exclusive-OR.
However, malleation functions may also implement fea-
tures such as truncation or more sophisticated editing,
which could imply a complex and structured malleation
string.

Building block: theory solvers. Our techniques make
use of efficient theory solvers, such as SAT and Satis-
fiability Modulo Theories (SMT) [1, 49]. SAT solvers
apply a variety of tactics to identify or rule out a satis-
fying assignment to a boolean constraint formula, while
SMT adds a broader range of theories and tactics such
as integer arithmetic and string logic. While in princi-
ple our techniques can be extended to work with either
system, in practice we will focus our techniques to use
quantifier-free operations over bitvectors (a theory that
easily reduces to SAT). In later sections, we will show
how to realize these techniques efficiently using concrete
SAT and SMT packages.

Anatomy of our attack algorithm. The essential idea in
our approach is to model each phase of a chosen cipher-
text attack as a constraint satisfaction problem. At the
highest level, we begin by devising an initial constraint
formula that defines the known constraints on (and hence,
implicitly, a set of candidates for) the unknown plaintext
M∗. At each phase of the attack, we will use our current
knowledge of these constraints to derive an experiment
that, when executed against the real decryption oracle, al-
lows us to “rule out” some non-zero number of plaintext
candidates. Given the result of a concrete experiment,
we can then update our constraint formula using the new
information, and continue the attack procedure until no
further candidates can be eliminated.

In the section that follows, we use M0,M1 to represent
the partition of messages induced by a malleation string.
M0 and M1 represent concrete plaintext message assign-
ments chosen by the solver, members of the respective
partitions.

1This captures the fact that, in some encryption schemes (e.g., CBC-
mode encryption), malleation produces key-dependent effects on the
decrypted message. We discuss and formalize this in §2.
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The process of deriving the malleation string repre-
sents the core of our technical work. It requires our algo-
rithms to reason deeply over both the plaintext malleation
function and the format checking function in combina-
tion. To realize this, we rely heavily on theory solvers,
together with some novel optimization techniques.

Attack intuition. We now explain the full attack in greater
detail. To provide a clear exposition, we will begin this
discussion by discussing a simplified and inefficient pre-
cursor algorithm that we will later optimize to produce
our main result. Our discussion below will make a signif-
icant simplifying assumption that we will later remove:
namely, that Maulplain will output exactly one plaintext
for any given input. This assumption is compatible with
common encryption schemes such as stream ciphers, but
will not be valid for other schemes where malleation can
produce key-dependent effects following decryption.

We now describe the basic steps of our first attack algo-
rithm.

Step 0: Initialization. At the beginning of the attack, our
attack algorithm receives as input a target ciphertext C∗,
as well as a machine-readable description of the func-
tions F and Maulplain. We require that these descriptions
be provided in the form of a constraint formula that a
theory solver can reason over. To initialize the attack
procedure, the user may also provide an initial constraint
predicate G0 : {0,1}n→{0,1} that expresses all known
constraints over the value of M∗.2 (If we have no a priori
knowledge about the distribution of M∗, we can set this
initial formula G0 to be trivial).

Beginning with i = 1, the attack now proceeds to iterate
over the following two steps:

Step 1: Identify an experiment. Let Gi−1 be the current
set of known constraints on M∗. In this first step, we
employ the solver to identify a malleation instruction
string S as well as a pair of distinct plaintexts M0,M1
that each satisfy the constraints of Gi−1. Our goal is to
identify an assignment for (S,M0,M1) that induces the
following specific properties on M0,M1: namely, that
each message in the pair, when mauled using S and then
evaluated using the format checking function, results in
a distinct output from F. Expressed more concretely, we
require the solver to identify an assignment that satisfies
the following constraint formula:

Gi−1(M0) = Gi−1(M1) = 1 ∧ (1)
∀b ∈ {0,1} : F(Maulplain(Mb,S)) = b

2Here n represents an upper bound on the length of the plaintext
M∗.

If the solver is unable to derive a satisfying assignment
to this formula, we conclude the attack and proceed to
Step (3). Otherwise we extract a concrete satisfying as-
signment for S, assign this value to S, and proceed to the
next step.

Step 2: Query the oracle; update the constraints. Given
a concrete malleation string S, we now apply the cipher-
text malleation function to compute an experiment ci-
phertext C← Maulciph(C

∗,S), and submit C to the de-
cryption oracle. When the oracle produces a concrete
result r ∈ {0,1}, we compute an updated constraint for-
mula Gi such that for each input M, it holds that:

Gi(M)← (Gi−1(M) ∧ F(Maulplain(M,S)) = r)

If possible, we can now ask the solver to simplify the
formula Gi by eliminating redundant constraints in the
underlying representation. We now set i ← i + 1 and
return to Step (1).

Step 3: Attack completion. The attack concludes when
the solver is unable to identify a satisfying assignment
in Step (1). In the ideal case, this occurs because the
constraint system Gi−1 admits only one possible candi-
date plaintext, M∗: when this happens, we can employ
the solver to directly recover M∗ and complete the attack.
However, the solver may also fail to find an assignment
because no further productive experiment can be gener-
ated, or simply because finding a solution proves com-
putationally intractable. When the solver conclusively
rules out a solution at iteration i = 1 (i.e., prior to issuing
any decryption queries) this can be taken as an indication
that a viable attack is not practical using our techniques.
Indeed, this feature of our work can be used to rule out
the exploitability of certain systems, even without access
to a decryption oracle. In other cases, the format oracle
may admit only partial recovery of M∗. If this occurs, we
conclude the attack by applying the solver to the final
constraint formula Gi−1 to extract a human-readable de-
scription of the remaining candidate space (e.g., the bits
of M∗ we are able to uniquely recover).

Remark on efficiency. A key feature of the attack de-
scribed above is that it is guaranteed to make progress at
each round in which the solver is able to find a satisfying
assignment to Equation (1). This is fundamental to the
constraint system we construct: our approach forces the
solver to ensure that each malleation string S implicitly
partitions the candidate message set into a pair (M0,M1),
such that malleation of messages in either subset by S
will produce distinct outputs from the format checking
function F. As a consequence of this, for any possible
result from the real-world decryption oracle, the updated
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Figure 2: Left: illustration of a plaintext candidate space
defined by Gi−1, highlighting the two subsets M0,M1
induced by a specific malleation string S. Right: the can-
didate space defined by Gi, in which many candidates
have been eliminated following an oracle response b = 1.

constraint formula Gi must eliminate at least one plaintext
candidate that satisfied the previous constraints Gi−1.

While this property ensures progress, it does not imply
that the resulting attack will be efficient. In some cases,
the addition of a new constraint will fortuitously rule out
a large number of candidate plaintexts. In other cases, it
might only eliminate a single candidate. As a result, there
exist worst-case attack scenarios where the algorithm re-
quires as many queries as there are candidates for M∗,
making the approach completely unworkable for prac-
tical message sizes. Addressing this efficiency problem
requires us to extend our approach.

Improving query profitability. We can define the prof-
itability ψ(Gi−1,Gi) of an experimental query by the
number of plaintext candidates that are “ruled out” once
an experiment has been executed and the constraint for-
mula updated. In other words, this value is defined as the
number of plaintext candidates that satisfy Gi−1 but do
not satisfy Gi. The main limitation of our first attack strat-
egy is that it does not seek to optimize each experiment
to maximize query profitability.

To address this concern, let us consider a more general
description of our attack strategy, which we illustrate in
Figure 2. At the ith iteration, we wish to identify a mal-
leation string S that defines two disjoint subsets M0,M1
of the current candidate plaintext space, such that for any
concrete oracle result r ∈ {0,1} and ∀M ∈Mr it holds
that F(Maulplain(M,S)) = r. In this description, any con-
crete decryption oracle result must “rule out” (at a mini-
mum) every plaintext contained in the subset M1−r. This
sets ψ(Gi−1,Gi) equal to the cardinality of M1−r.

To increase the profitability of a given query, it is there-
fore necessary to maximize the size of M1−r. Of course,
since we do not know the value r prior to issuing a decryp-
tion oracle query, the obvious strategy is to find S such

that both M0,M1 are as large as possible. Put slightly
differently, we wish to find an experiment S that max-
imizes the cardinality of the smaller subset in the pair.
The result of this optimization is a greedy algorithm that
will seek to eliminate the largest number of candidates
with each query.

Technical challenge: model count optimization.
While our new formulation is conceptually simple, actu-
ally realizing it involves overcoming serious limitations
in current theory solvers. This is due to the fact that,
while several production solvers provide optimization
capabilities [49], these heuristics optimize for the value
of specific variables. Our requirement is subtly different:
we wish to solve for a candidate S that maximizes the
number of satisfying solutions for the variables M0,M1
in Equation (1).3

Unfortunately, this problem is both theoretically and
practically challenging. Indeed, merely counting the num-
ber of satisfying assignments to a constraint formula is
known to be asymptotically harder than SAT [69, 70],
and practical counting algorithms solutions [14, 20] tend
to perform poorly when the combinatorial space is large
and the satisfying assignments are sparsely distributed
throughout the space, a condition that is likely in our
setting. The specific optimization problem our tech-
niques require proves to be even harder. Indeed, only
recently was such a problem formalized, under the name
Max#SAT [35].

Approximating Max#SAT. While an exact solution to
Max#SAT is NPPP-complete [35, 69], several works have
explored approximate solutions to this and related count-
ing problems [25, 35, 37, 65]. One powerful class of
approximate counting techniques, inspired by the the-
oretical work of Valiant and Vazirani [71] and Stock-
meyer [67], uses a SAT oracle as follows: given a con-
straint formula F over some bitvector T , add to F a
series of s random parity constraints, each computed
over the bits of T . For j = 1 to s, the jth parity con-
straint can be viewed as requiring that H j(T ) = 1 where
H j : {0,1}|T | → {0,1} is a universal hash function. In-
tuitively, each additional constraint reduces the number
of satisfying assignments approximately by half, inde-
pendently of the underlying distribution of valid solu-
tions. The implication is as follows: if a satisfying as-
sigment to the enhanced formula exists, we should be
convinced (probabilistically) that the original formula

3Some experimental SMT implementations provide logic for rea-
soning about the cardinality of small sets, these strategies scale poorly
to the large sets we need to reason about in practical format oracle
attacks.
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is likely to possess on the order of 2s satisfying assign-
ments. Subsequently, researchers in the model counting
community showed that with some refinement, these ap-
proximate counting strategies can be used to approximate
Max#SAT [35], although with an efficiency that is sub-
stantially below what we require for an efficient attack.

To apply this technique efficiently to our attack, we
develop a custom count-optimization procedure, and ap-
ply it to the attack strategy given in the previous section.
At the start of each iteration, we begin by conjecturing a
candidate set size 2s for some non-negative integer s, and
then we query the solver for a solution to (S,M0,M1) in
which approximately 2s solutions can be found for each
of the abstract bitvectors M0,M1. This involves modify-
ing the equation of Step (1) by adding s random parity
constraints to each of the abstract representations of M0
and M1. We now repeatedly query the solver on variants
of this query, with increasing (resp. decreasing) values
of s, until we have identified the maximum value of s
that results in a satisfying assignment.4 For a sufficiently
high value of s, this approach effectively eliminates many
“unprofitable” malleation string candidates and thus sig-
nificantly improves the efficiency of the attack.

The main weakness of this approach stems from the
probabilistic nature of the approximation algorithm. Even
when 2s satisfying assignments exist for M0,M1, the
solver may deem the extended formula unsatisfiable with
relatively high probability. In our approach, this false-
negative will cause the algorithm to reduce the size of s,
potentially resulting in the selection of a less-profitable
experiment S. Following Gomes et al. [37], we are able
to substantially improve our certainty by conducting t
trials within each query, accepting iff at least d( 1

2 +δ)te
trials are satisfied, where δ is an adjustable tolerance
parameter.

Putting it all together. The presentation above is in-
tended to provide the reader with a simplified description
of our techniques. However, this discussion does not con-
vey most challenging aspect of our work: namely, the
difficulty of implementing our techniques and making
them practical, particularly within the limitations of ex-
isting theory solvers. Achieving the experimental results
we present in this work represents the result of months
of software engineering effort and manual algorithm op-
timization. We discuss these challenges more deeply in
§4.

Using our techniques we were able to re-discover both
well known and entirely novel chosen ciphertext attacks,

4Note that s = 0 represents the original constraint formula, and so a
failure to find a satisfying assignment at this size triggers the conclusion
of the attack.

all at a query efficiency nearly identical to the (optimal
in expectation) human-implemented attacks. Our experi-
ments not only validate the techniques we describe in this
work, but they also illustrate several possible avenues for
further optimization, both in our algorithms and in the
underlying SMT/SAT solver packages. Our hope is that
these results will inspire further advances in the theory
solving community.

2 Preliminaries

2.1 Encryption Schemes and Malleability
Our attacks operate assume that the target system is us-
ing a malleable symmetric encryption scheme. We now
provide definitions for these terms.

Definition 1 (Symmetric encryption) A symmet-
ric encryption scheme Π is a tuple of algorithms
(KeyGen,Encrypt,Decrypt) where KeyGen(1λ) gen-
erates a key, the probabilistic algorithm EncryptK(M)
encrypts a plaintext M under key K to produce a cipher-
text C, and the deterministic algorithm DecryptK(C)
decrypts C to produce a plaintext or the distinguished
error symbol ⊥. We use M to denote the set of valid
plaintexts accepted by a scheme, and C to denote the set
of valid ciphertexts.

2.1.1 Malleation Functions

The description of malleation functions is given in the
form of two functions. The first takes as input a cipher-
text along with an opaque data structure that we refer to
as a malleation instruction string, and outputs a mauled
ciphertext. The second function performs the analogous
function on a plaintext. We require that the following
intuitive relationship hold between these functions: given
a plaintext M and an instruction string, the plaintext mal-
leation function should “predict” the effect of mauling
(and subsequently decrypting) a ciphertext that encrypts
M.

Definition 2 (Malleation functions) The malleation
functions for a symmetric encryption scheme Π

comprise a pair of efficiently-computable functions
(MaulΠciph,MaulΠplain) with the following properties. Let
M,C be the plaintext (resp. ciphertext) space of Π. The
function MaulΠciph : C × {0,1}∗ → C ∪ {⊥} takes as
input a ciphertext and a malleation instruction string. It
outputs a ciphertext or the distinguished error symbol ⊥.
The function MaulΠplain : M×{0,1}∗ → M̂, on input a
plaintext and a malleation instruction string, outputs a
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set M̂ ⊆M ∪ {⊥} of possible plaintexts (augmented
with the decryption error symbol⊥). The structure of the
malleation string is entirely defined by these functions;
since our attack algorithms will reason over the functions
themselves, we treat S itself as an opaque value.

We say that (MaulΠciph,MaulΠplain) describes the malleabil-
ity features of Π if malleation of a ciphertext always
induces the expected effect on a plaintext following
encryption, malleation and decryption. More formally,
∀K ∈ KeyGen(1λ),∀C ∈ C,∀S ∈ {0,1}∗ the following
relation must hold whenever MaulΠciph(C,S) 6=⊥:

DecryptK(MaulΠciph(C,S)) ∈MaulΠplain(DecryptK(C),S)

In §4.2.1 we discuss a collection of encryption schemes
and implementing their associated malleation functions.

2.2 Theory Solvers and Model Counting
Solvers take as input a system of constraints over a set
of variables, and attempt to derive (or rule out the ex-
istence of) a satisfying solution. Modern SAT solvers
generally rely on two main families of theorem solver:
DPLL [28, 29] and Stochastic Local Search [39]. Sat-
isfiability Modulo Theories (SMT) solvers expand the
language of SAT to include predicates in first-order logic,
enabling the use of several theory solvers ranging from
string logic to integer logic. Our prototype implementa-
tion uses a quantifier-free bitvector (QFBV) theory solver.
In practice, this is implemented using SMT with a SAT
solver as a back-end.5 For the purposes of describing our
algorithms, we specify a query to the solver by the sub-
routine SATSolve{(A1, . . . ,AN) : G} where A1, . . . ,AN
each represent abstract bitvectors of some defined length,
and G is a constraint formula over these variables. The
response from this call provides one of three possible
results: (1) sat, as well as a concrete satisfying solution
(A1 . . . ,AN), (2) the distinguished response unsat, or (3)
the error unknown.

Model counting and Max#SAT. While SAT deter-
mines the existence of a single satisfying assign-
ment, a more general variant of the problem, #SAT,
determines the number of satisfying assignments. In
the literature this problem is known as model count-
ing [11, 14, 20, 24, 37, 63, 70, 75].

In this work we make use of a specific optimization
variant of the model count problem, which was formu-
lated as Max#SAT by Fremont et al. [35]. In a streamlined
form, the problem can defined as follows: given a boolean

5In principle our attacks can be extended to other theories, with
some additional work that we describe later in this section.

formula φ(X ,Y ) over abstract bitvectors X and Y , find
a concrete assignment to X that maximizes the number
of possible satisfying assignments to Y .6 We will make
use of this abstraction in our attacks, with realizations
discussed in §3.2. Specifically, we define our main attack
algorithm in terms of a generic Max#SAT oracle that has
the following interface:

Max#SAT(φ,X ,Y )→ X

2.3 Format Checking Functions
Our attacks assume a decryption oracle that, on input a
ciphertext C, computes and returns F(DecryptK(C)). We
refer to the function F : M ∪ {⊥}→ {0,1} as a format
checking function. Our techniques place two minimum
requirements on this function: (1) the function F must
be efficiently-computable, and (2) the user must supply
a machine-readable implementation of F, expressed as a
constraint formula that a theory solver can reason over.

Function descriptions. Requiring format checking func-
tions to be usable within SAT/SMT solvers raises addi-
tional implementation considerations. Refer to the full
version of this paper [15] for discussion of these consid-
erations, and to the artifact accompanying this work for
implemented examples.

3 Constructions

In this section we present a high-level description of our
main contribution: a set of algorithms for programmati-
cally conducting a format oracle attack. First, we provide
pseudocode for our main attack algorithm, which uses a
generic Max#SAT oracle as its key ingredient. This first al-
gorithm can be realized approximately using techniques
such as the MaxCount algorithm of Fremont et al. [35],
although this realization will come at a significant cost
to practical performance. To reduce this cost and make
our attacks practical, we next describe a concrete replace-
ment algorithm that can be used in place of a Max#SAT
solver. The combination of these algorithms forms the
basis for our tool Delphinium.

3.1 Main Algorithm
Algorithm 1 presents our main attack algorithm, which
we name DeriveAttack. This algorithm is parameterized

6The formulation of Fremont et al. [35] includes an additional set
of boolean variables Z that must also be satisfied, but is not part of the
optimization problem. We omit this term because it is not used by our
algorithms. Note as well that, unlike Fremont et al., our algorithms are
not concerned with the actual count of solutions for Y .
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by three subroutines: (1) a subroutine for solving the
Max#SAT problem, (2) an implementation of the cipher-
text malleation function Maulciph, and (3) a decryption
oracle Odec. The algorithm takes as input a target cipher-
text C∗, constraint formulae for the functions Maulplain,F,
and an (optional) initial constraint system G0 that defines
known constraints on M∗.

This algorithm largely follows the intuition described
in §1.1. At each iteration, it derives a concrete malleation
string S using the Max#SAT oracle in order to find an
assignment that maximizes the number of solutions to
the abstract bitvector M0‖M1. It then mauls C∗ using
this malleation string, and queries the decryption oracle
Odec on the result. It terminates by outputting a (possi-
bly incomplete) description of M∗. This final output is
determined by a helper subroutine SolveForPlaintext that
uses the solver to find a unique solution for M∗ given a
constraint formula, or else to produce a human-readable
description of the resulting model.7

Theorem 3.1 Given an exact Max#SAT oracle, Algo-
rithm 1 maximizes in expectation the number of candidate
plaintext messages ruled out at each iteration.

A proof of Theorem 3.1 appears in the full version of this
paper [15].

Remarks. Note that a greedy adaptive attack may not be
globally optimal. It is hypothetically possible to modify
the algorithm, allowing it to reason over multiple oracle
queries simultaneously (in fact, Phan et al. discuss such
a generalization in their side channel work [58]). We find
that this is computationally infeasible in practice. Finally,
note also that our proof assumes an exact Max#SAT ora-
cle. In practice, this will likely be realized with a probably
approximately correct instantiation, causing the resulting
attack to be a probably approximately greedy attack.

3.2 Realizing the Max#SAT Oracle
Realizing Algorithm 1 in practice requires that we pro-
vide a concrete subroutine that can solve specific in-
stances of Max#SAT. We now address techniques for
approximately solving this problem.

Realization from Fremont et al. Fremont et al. [35]
propose an approximate algorithm called MaxCount that
can be used to instantiate our attack algorithms. The Max-
Count algorithm is based on repeated application of ap-
proximate counting and sampling algorithms [23, 24, 25],
which can in turn be realized using a general SAT solver.

7Our concrete implementation in §4 uses the solver to enumerate
each of the known and unknown bits of M∗.

While MaxCount is approximate, it can be tuned to pro-
vide a high degree of accuracy that is likely to be effective
for our attacks. Unfortunately, the Fremont et al. solu-
tion has two significant downsides. First, to achieve the
discussed bounds requires parameter selections which
induce infeasible queries to the underlying SAT solver.
Fremont et al. address this by implementing their algo-
rithm with substantially reduced parameters, for which
they demonstrate good empirical performance. However,
even the reduced Fremont et al. approach still requires
numerous calls to a solver. Even conducting a single ap-
proximate count of solutions to the constraint systems
in our experiments could take hours to days, and such
counts might occur several times in a single execution of
MaxCount.

A more efficient realization. To improve the efficiency
of our implementations, we instead realize a more effi-
cient optimization algorithm we name FastSample. This
algorithm can be used in place of the Max#SAT subrou-
tine calls in Algorithm 1. Our algorithm can be viewed as
being a subset of the full MaxCount algorithm of Fremont
et al.

The FastSample algorithm operates over a constraint
system φ(S,M0‖M1), and returns a concrete value S that
(heuristically) maximizes the number of solutions for the
bitvectors M0,M1. It does this by first conjecturing some
value s, and sampling a series of 2s low-density parity
hash functions of the form H : {0,1}n→ {0,1} (where
n is the maximum length of M0 or M1). It then modifies
the constraint system by adding s such hash function con-
straints to each of M0,M1, and asking the solver to find a
solution to the modified constraint system. If a solution
is found (resp. not found) for a specific s, FastSample
adjusts the size of s upwards (resp. downwards) until it
has found the maximal value of s that produces a satisfy-
ing assignment, or else is unable to find an assignment
even at s = 0.

The goal of this approach is to identify a malleation
string S as well as the largest integer s such that at least
2s solutions can be found for each of M0,M1. To improve
the accuracy of this approach, we employ a technique
originally pioneered by Gomes et al. [37] and modify
each SAT query to include multiple trials of this form,
such that only a fraction δ+1/2 of the trials must succeed
in order for S to be considered valid. The parameters t,δ
are adjustable; we evaluate candidate values in §5.

Unlike Fremont et al. (at least, when implemented
at full parameters) our algorithm does not constitute a
sound realization of a Max#SAT solver. However, empiri-
cally we find that our attacks using FastSample produce
query counts that are close to the optimal possible attack.
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More critically, our approach is capable of identifying a
candidate malleation string in seconds on the constraint
systems we encountered during our experiments.

Additional algorithms. Our algorithms employ an ab-
stract subroutine AdjustSize that is responsible for updat-
ing the conjectured set size s in our optimization loop:

(bcontinue,s′,Z′)← AdjustSize(bsuccess,n,s,Z)

The input bit bsuccess indicates whether or not a solu-
tion was found for a conjectured size s, while n provides
a known upper-bound. The history string Z ∈ {0,1}∗ al-
lows the routine to record state between consecutive calls.
AdjustSize outputs a bit bcontinue indicating whether the
attack should attempt to find a new solution, as well as
an updated set size s′. If AdjustSize is called with s =⊥,
then s′ is set to an initial set size to test, bcontinue = TRUE,
and Z′ = Z.

Finally, the subroutine ParityConstraint(n, l) constructs
l randomized parity constraints of weight k over a bitvec-
tor b = b1b2 . . .bn where k ≤ n denotes the number of
bit indices included in a parity constraint (i.e. the par-
ity constraints come from a family of functions H(b) =⊕n

i=1 bi ·ai where a ∈ {0,1}n and the hamming weight
of a is k).

Algorithm 1: DeriveAttack
Input: Machine-readable description of F,

Maulplain; target ciphertext C∗; initial
constraints G0;

Output: M∗ or a model of the remaining plaintext
candidates

Procedure:
i← 1;
do

Define φ(S,M0‖M1) as
[
Gi−1(M0) = 1 ∧

Gi−1(M1) = 1 ∧ F(Maulplain(M0,S)) =
0 ∧ F(Maulplain(M1,S)) = 1

]
;

S← Max#SAT (φ, S, M0‖M1);
if S 6=⊥ then

r← Odec(Maulciph(C
∗,S));

Define Gi(M) as[
Gi−1(M)∧ (F(Maulplain(M,S)) = r)

]
;

i← i+1;

while S 6=⊥;
return SolveForPlaintext(Gi);

Algorithm 2: FastSample
Input: φ a constraint system over abstract

bitvectors S,M0‖M1; n the maximum
length of (each of) M0,M1; m the
maximum length of S; t number of trials; δ

fraction of trials that must succeed
Output: S ∈ {0,1}m

Procedure:
(bcontinue,s,Z)← AdjustSize(FALSE,n,⊥,ε);
// define t symbolic copies of the

abstract bitvectors M0,M1, and a
new constraint system φt

{M1,0, . . . ,Mt,0}←M0;
{M1,1, . . . ,Mt,1}←M1;
Define φt(S,{M1,0, . . . ,Mt,0},{M1,1, . . . ,Mt,1}) as
φ(S,M1,0‖M1,1)∧·· ·∧φ(S,Mt,0‖Mt,1);
while bcontinue do

// Construct 2t s-bit parity
constraints

for i← 1 to t do
Hi,0← ParityConstraint (n,s);
Hi,1← ParityConstraint (n,s)

// Query the solver
S←
SATSolve{(S,{M1,0, . . . ,Mt,0},{M1,1, . . . ,Mt,1}) :

∃R0 ⊆ [1, t] : |R0| ≥
d(0.5+δ)te,∀ j ∈ R0 : H j,0(M j,0) = 1 ∧
∃R1 ⊆ [1, t] : |R1| ≥

d(0.5+δ)te,∀ j ∈ R1 : H j,1(M j,1) = 1 ∧
φt(S,{M1,0, . . . ,Mt,0},{M1,1, . . . ,Mt,1})};

if S == unsat then
bsuccess = FALSE;

(bcontinue,s,Z)←
AdjustSize(bsuccess,n,s,Z);

return S

4 Prototype Implementation

We now describe our prototype implementation, which
we call Delphinium. We designed Delphinium as an
extensible toolkit that can be used by practitioners to
evaluate and exploit real format oracles.

4.1 Architecture Overview
Figure 3 illustrates the architecture of Delphinium. The
software comprises several components:

Attack orchestrator. This central component is respon-
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Figure 3: Architecture of Delphinium.

sible for executing the core algorithms of the attack, keep-
ing state, and initiating queries to both the decryption
oracle and SMT/SAT solver. It takes the target ciphertext
C∗ and a description of the functions F and Maulplain as
well as the attack parameters t,δ as input, and outputs
the recovered plaintext.

SMT/SAT solver. Our implementation supports multi-
ple SMT solver frameworks (STP [1] and Z3 [49]) via a
custom compatibility layer that we developed for our tool.
To improve performance, the orchestrator may launch
multiple parallel instances of this solver.

In addition to these core components, the system in-
corporates two user-supplied modules, which can be cus-
tomized for a specific target:

Ciphertext malleator. This module provides a work-
ing implementation of the malleation function MaulΠciph.
We realize this module as a Python program, but it can
be implemented as any executable compatible with the
expected interface.8

Target interface (shim). This module is responsible for
formatting and transmitting decryption queries to the tar-
get system. It is designed as a user-supplied module in
recognition of the fact that this portion will need to be
customized for specific target systems and communica-
tion channels.

As part of our prototype implementation, we provide
working examples for each of these modules, as well as
a test harness to evaluate attacks locally.

4.2 Implementation Details
Realizing our algorithms in a practical tool required us
to solve a number of challenging engineering problems

8The interface requires input of a ciphertext and a malleation string,
with output the mauled ciphertext.

and to navigate limitations of existing SAT/SMT solvers.

Test Harness. For our experiments in §5 we developed
a test harness to implement the Ciphertext Malleator and
Target Interface shim. This test harness implements the
code for mauling and decrypting M∗ locally using a given
malleation string S.

Selecting SAT and SMT solvers. In the course of this
work we evaluated several SMT and SAT solvers opti-
mized for different settings. Seeking the best of a few
worlds, we use Z3 for formula manipulation and Crypto-
MiniSAT as a solving backend, bridged by CNF formula
representations. Refer to the full version of this paper [15]
for discussion and challenges of the solvers we evaluated.

Low-density parity constraints. Our implementation
of model counting requires our tool to incorporate 2t s-
bit distinct parity functions into each solver query. Each
parity constraint comprises an average of n

2 exclusive-
ORs (where n is the maximum length of M∗), resulting in
a complexity increase of tens to hundreds of gates in our
SAT queries. To address this, we adopted an approach
used by several previous model counting works [32, 77]:
using low-density parity functions. Each such function
of these samples k random bits of the input string, with k
centered around log2(n). As a further optimization, we
periodically evaluate the current constraint formula Gi to
determine if any bit of the plaintext has been fixed. We
omit fixed bits from the input to the parity functions, and
reduce both n and k accordingly.

Implementing AdjustSize. Because SAT/SMT queries
are computationally expensive, we evaluate a few strate-
gies for implementing AdjustSize which minimize time
spent solving. We omit discussion of these strategies for
brevity; refer to the full version of this paper [15].

Describing malleation. To avoid making users re-
implement basic functionality, Delphinium provides
built-in support for several malleation functions. These
include simple stream ciphers, stream ciphers that sup-
port truncation (from either the left or the right side),
and CBC mode encryption. The design of these mal-
leation functions required substantial extensions to the
Delphinium framework.

4.2.1 Implementing Malleation Functions

Truncation. Support for truncation requires
Delphinium to support plaintexts of variable length.
This functionality is not natively provided by the bitvec-
tor interfaces used in most solvers. We therefore modify
the solver values to encode message length in addition to
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content. This necessitates changes to the interface for
F. We accomplish this by treating the first log2(n) bits
of each bitvector as a length field specifying how long
the message is and by having every implementation of F
decode this value prior to evaluating the plaintext. To
properly capture truncation off either end of a message,
the malleation bitvector is extended by 2l̇og2(n) so the
lowest order log2(n) bits of the malleation bitvector
specify how many bits should be truncated off the low
order bits of the plaintext and the next log2(n) bits
specify what should be truncated from high order bits
of the message. For ease of implementation, in some
schemes the n bits following the truncation describe
the length field of the plaintext. This allows for easily
expressing the exclusive-OR portion of our malleation
without bit-shifting and allows encoding extension.
Some schemes, such as stream ciphers, only enable
truncation off one side of the message, and so in this
case we add a constraint to the formula which disallows
truncation off the low order bits of a message. This is
because trunction off the high order bits would imply
a misalignment of the ciphertext with the keystream,
causing decryption to produce effectively randomized
plaintext.

Truncation for Block Cipher Modes. In block cipher
modes such as CTR, CFB, and OFB, an attacker also
has the ability to increment the nonce and truncate off
blocks of ciphertext.9 To capture this capability, in the
malleation function we additionally constrain the mal-
leation string to express truncation off the high order bits
of a message (earlier blocks of ciphertext), provided the
number of bits being truncated is a multiple of the block
size.

CBC Mode. In contrast with stream ciphers, Maul
ΠCBC
plain

is not equal to Maul
ΠCBC
ciph and moreover Maul

ΠCBC
plain is sig-

nificantly more complex. In CBC mode, decryption of
a ciphertext block Ci is defined as Pi = Deck(Ci)⊕Ci−1
where Ci−1 denotes the previous ciphertext block. Since
the block Ci is given directly to a block cipher, any imple-
mentation must account for the the fact that modification
of the block Ci creates an unpredictable effect on the
output Pi, effectively randomizing it via the block cipher.

For a solver to reason over such an effect on the plain-
text output, we would need to include constraint clauses
corresponding to encryption and decryption, i.e. boolean
operations implementing symmetric schemes like AES.
To avoid this significant overhead, we instead modify
the interface of Maul

ΠCBC
plain to output two abstract bitvec-

9This is not necessarily possible when dealing with other stream
ciphers, due to the keystream being misaligned with the ciphertext.

tors (M,Mask). Mask represents a mask string: any bit
j where Mask[ j] = 1 is viewed as a wildcard in the mes-
sage vector M. When Mask[ j] = 0, the value of the out-
put message is equal to M[ j] at that position, and when
Mask[i] = 1 the value at position M[ j] must be viewed
as unconstrained. This requires that we modify F to take
(M,Mask) as input. The modified F is able to produce a
third value in addition to true and false. This new output
value indicates that the format check cannot assign a def-
inite true/false value on this input, due to the uncertainty
created by the unconstrained bits.10 Realizing this for-
mulation requires only minor implementation changes to
our core algorithms.

Exclusive-OR and Truncation for CBC. With CBC
mode decryption, manipulating a preceding ciphertext
block Ci−1 produces a predictable exclusive-OR in the
plaintext block Pi. A message that has been encrypted
with a block cipher can also be truncated, provided that
truncation is done in multiples of the block size. There-
fore, we define malleability for CBC to capture (1) block-
wise truncation (from either the left or right side of the
ciphertext) and (2) exclusive-OR, where exclusive-OR at
index i in one block produces the corresponding bit-flip
at index i in the next block of decrypted ciphertext.

Supporting Extension. For encryption schemes that al-
low truncation off the beginning of a message, an attacker
may also be able to fill in the truncated portion with ar-
bitrary ciphertext, even if this ciphertext may decrypt
to plaintext unknown to them. If the corresponding por-
tion of the plaintext is not examined by the format check
function, the attacker can derive information from such
queries (if the portion is checked, the attacker can only
learn the result of the check over random bits by nature of
ciphers). Thus, we create an additional initial constraint
for this special case, which allows extension to the ci-
phertext, limited to where the corresponding plaintext is
not examined by the format function.

4.3 Software

Our prototype implementation of Delphinium comprises
roughly 4.2 kLOC of Python. This includes the attack
orchestrator, example format check implementations, the
test harness, and our generic solver Python API which
allows for modular swapping of backing SMT solvers,
with implementations for Z3 and STP provided. In pur-
suing this prototype, we submitted various patches to the

10In practice, we implement the output of F as a bitvector of length
2, and modify our algorithms to use 00 and 01 in place of 0 and 1,
respectively.
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underlying theory solvers that have since been included
in the upstream software projects.

4.4 Extensions

In general, arbitrary functions on fixed-size values can be
converted into boolean circuits which SMT solvers can
reason over. Existing work in MPC develops compilers
from DSLs or a subset of C to boolean circuits which
could be used to input arbitrary check format functions
easily [34, 53]. Experimenting with these, we find that
the circuit representations are very large and thus have
high runtime overhead when used as constraints. It is
possible that circuit synthesis algorithms designed to
decrease circuit size (used for applications such as FPGA
synthesis) or other logic optimizers could reduce circuit
complexity, but we leave exploring this to future work.

We additionally provide a translation tool from the out-
put format of CMBC-GC [34] to Python (entirely com-
prised of circuit operations) to enable use of the Python
front-end to Delphinium.

5 Experiments

5.1 Experimental Setup

To evaluate the performance of Delphinium, we tested
our implementation on several multi-core servers using
the most up-to-date builds of Z3 (4.8.4) and CryptoMin-
iSAT (5.6.8). The bulk of our testing was conducted using
Amazon EC2, using compute-optimized c5d.18xlarge
instances with 72 virtual cores and 144GB of RAM.11

Several additional tests were run a 72-core Intel Xeon E5
CPU with 500GB of memory running on Ubuntu 16.04,
and a 96-core Intel Xeon E7 CPU with 1TB of memory
running Ubuntu 18.04. We refer to these machines as
AWS, E5 and E7 in the sections below.

Data collection. For each experimental run, we collected
statistics including the total number of decryption oracle
queries performed; the wall-clock time required to con-
struct each query; the number of plaintext bits recovered
following each query; and the value of s used to con-
struct a given malleation string. We also recorded each
malleation string S produced by our attack, which allows
us to “replay” any transcript after the fact. The total num-
ber of queries required to complete an attack provides
the clearest signal of attack progress, and we use that
as the primary metric for evaluation. However, in some

11We also mounted 900GB of ephemeral EC2 storage to each in-
stance as a temporary filesystem to save CNF files during operation.

cases we evaluate partial attacks using the ApproxMC ap-
proximate model counting tool [65]. This tool provides
us with an estimate for the total number of remaining
candidates for M∗ at every phase of a given attack, and
thus allows evaluation of partial attack transcripts.

Selecting attack parameters. The adjustable parame-
ters in FastSample include t, the number of counting
trials, δ, which determines the fraction of trials that must
succeed, and the length of the parity constraints used to
sample. We ran a number of experiments to determine op-
timal values for these parameters across the format func-
tions PKCS7 and a bitwise format function defined in
§5.2. Empirically, δ= 0.5, 26 t 6 5, and parity functions
of logarthmic length are suitable for our purposes. Ex-
periments varying t and comparing parity hash function
lengths can be found in the full version of this paper [15].
These tests were performed on AWS.

5.2 Experiments with Stream Ciphers
Because the malleation function for stream ciphers is
relatively simple (consisting simply of bitwise exclusive-
OR), we initiated our experiments with these ciphers.

Bytewise Encryption Padding. The PKCS #7 encryp-
tion standard (RFC 2315) [44] defines a padding scheme
for use with block cipher modes of operation. This
padding is similar to the standard TLS CBC-mode
padding [7] considered by Vaudenay [73]. We evaluate
our algorithm on both these functions as a benchmark
because PKCS7 and its variants are reasonably complex,
and because the human-developed attack is well under-
stood. Throughout the rest of this paper, we refer to these
schemes as PKCS7 and TLS-PKCS7.

Setup. We conducted an experimental evaluation of the
PKCS #7 attack against a 128-bit stream cipher, using
parameters t = 5,δ = 0.5. Our experiments begin by sam-
pling a random message M∗ from the space of all possible
PKCS #7 padded messages, and setting G0← FPKCS7.12

This evaluation was performed on AWS, E5, and E7.

Results. Our four complete attacks completed in an aver-
age of 1699.25 queries (min. 1475, max. 1994) requiring
1.875 hours each (min. 1.63, max. 2.18). A visualization
of the resulting attack appears in the full version of this
paper [15]. These results compare favorably to the Vaude-
nay attack, which requires ˜2000 queries in expectation,
however it is likely that additional tests would find some
examples in excess of this average. As points of compar-
ison, attacks with t = 3 resulted in a similar number of

12In practice, this plaintext distribution tends to produce messages
with short padding.
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queries (modulo expected variability over different ran-
domly sampled messages) but took roughly 2 to 3 times
as long to complete, and attacks with t = 1 reached over
5000 queries having only discovered half of the target
plaintext message.

Bitwise Padding. To test our attacks, we constructed
a simplified bit padding scheme Fbitpad. This contrived
scheme encodes the bit length of the padding P into the
rightmost dlog2(n)e bits of the plaintext string, and then
places up to P padding bits directly to the left of this
length field, with each padding bit set to 1. We verified
the effectiveness of our attacks against this format using a
simple stream cipher. Using the parameters t = 5, δ= 0.5
the generated attacks took on average 153 queries (min.
137, max. 178). Figure 1 shows one attack transcript at
t = 5,δ = 0.5. Additional experiments measuring the
effect of t on this format are provided in the full version
of this paper [15]. These experiments were run primarily
on E5.

Negative result: Cyclic Redundancy Checks (CRCs).
Cyclic redundancy checks (CRCs) are used in many net-
work protocols for error detection and correction. CRCs
are well known to be malleable, due to the linearity of the
functions: namely, for a CRC it is always the case that
CRC(a⊕b)=CRC(a)⊕CRC(b). To test Delphinium’s
ability to rule out attacks against format functions, we
implemented a message format consisting of up to three
bytes of message, followed by a CRC-8 and a 5-bit mes-
sage length field. The format function Fcrc8 computes
the CRC over the message bytes, and verifies that the
CRC in the message matches the computed CRC.13 A
key feature of this format is that a valid ciphertext C∗

should not be vulnerable to a format oracle attack using
a simple exclusive-OR malleation against this format, for
the simple reason that the attacker can predict the output
of the decryption oracle for every possible malleation of
the ciphertext (due to the linearity of CRC), and thus no
information will be learned from executing a query. This
intuition was confirmed by our attack algorithm, which
immediately reported that no malleation strings could be
found. These experiments were performed on E5.

5.3 Ciphers with Truncation
A more powerful malleation capability grants the attacker
to arbitrarily truncate plaintexts. In some ciphers, this
truncation can be conducted from the low-order bits of
the plaintext, simply by removing them from the right

13In our implementation we used a simple implementation that does
not reflect input and output, or add an initial constant value before or
after the remainder is calculated.

side of the ciphertext. In other ciphers, such as CTR-
mode or CBC-mode, a more limited left-side truncation
can be implemented by modifying the IV of a ciphertext.
Delphinium includes malleation functions that incorpo-
rate all three functionalities.

CRC-8 with a truncatable stream cipher. To evaluate
how truncation affects the ability of Delphinium to find
attacks, we conducted a second attack using the function
Fcrc8, this time using an implementation of AES-CTR
supporting truncation. Such a scheme may seem con-
trived, since it involves an encrypted CRC value. How-
ever, this very flaw was utilized by Beck and Trew to
break WPA [68]. In our experiment, the attack algorithm
was able to recover two bytes of the three-byte message,
by using the practical strategy of truncating the message
and iterating through all possible values of the remaining
byte. Additional CRC experiments can be found in the
full version of this paper [15]. These experiments were
run primarily on E5.

As this example demonstrates, the level of customiza-
tion and variation in how software developers operate
over encrypted data streams can obfuscate the concrete
security of an existing implementation. This illustrates
the utility of Delphinium since such variation’s effect on
the underlying scheme does not need to be fully under-
stood by a user, outside of encoding the format’s basic
operation.

Thumb Embedded ISA. To exercise Delphinium
against a novel format oracle of notably different struc-
ture than those traditionally analyzed (such as padding),
we implemented a minimal instruction interpreter for the
16-bit Thumb instruction set architecture (ISA), defined
as part of the ARM specification [3], capable of emitting
illegal instruction signals. Then, operating over stream-
cipher encrypted Thumb instructions and using illegal
instructions as a boolean signal, Delphinium is able to
exploit the exclusive-OR malleation to uncover the top
seven bits of each 16-bit instruction, in many cases uncov-
ering nine or more (up to 16) bits of each instruction,14 in
an average of ˜13.3 queries, with each full attack taking
only seconds on E5.

Although limited in a few regards, most notably in the
simplification of the format oracle into a boolean signal
and the assumption that an attacker could be situated in
a way that this signal could be gathered, this attack is
timely in that it is inspired by the widespread use of unau-
thenticated encryption in device firmware updates [31].

14Such a partial firmware decryption generally leaks the instruction
opcode, but not its arguments. This could be very useful to an attacker,
for example in fuzzy comparison with compiled open source libraries to
determine libraries and their versions used in a given firmware update.
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If these updates are delivered over-the-air, they may be
susceptible to man-in-the-middle attacks enabling such
a decryption oracle. Extensive industry research and a
current Internet Draft note that unauthenticated firmware
updates are an ongoing problem [31, 54].

This initial result serves both as validation of
Delphinium and as creation of an avenue for future work,
including the development of a model for a more com-
plex but widespread ISA such as 32-bit ARM [3], perhaps
exploiting additional signals such as segmentation faults
or side channels in order to capture the capabilities of a
sophisticated adversary.

S2N with Exclusive-OR and Truncation. To evaluate
a realistic attack on a practical format function, we devel-
oped a format checking function for the Amazon s2n [2]
TLS session ticket format. s2n uses 60-byte tickets with
a 12-byte header comprising a protocol version, cipher-
suite version, and format version, along with an 8-byte
timestamp that is compared against the current server
clock. Although s2n uses authenticated encryption (AES-
GCM), we consider a hypothetical scenario where nonce
re-use has allowed for message forgery [21, 33].

Our experiments recovered the 8-byte time field that a
session ticket was issued at: in one attack run, with fewer
than 50 queries. However, the attack was unable to obtain
the remaining fields from the ticket. This is in part due
to some portions of the message being untouched by the
format function, and due to the complexity of obtaining
a positive result from the oracle when many bytes are
unknown. We determined that a full attack against the
remaining bytes of the ticket key is possible, but would
leave 16 bytes unknown and would require approximately
250 queries. Unsurprisingly, Delphinium timed out on
this attack. These experiments were run on AWS and E5.

5.4 CBC mode

We also used the malleation function for CBC-mode en-
cryption. This malleation function supports an arbitrary
number of blocks, and admits truncation of plaintexts
from either side of the plaintext.15 The CBC malleation
function accepts a structured malleation string S, which
can be parsed as (S′, l,r) where l,r are integers indicating
the number of blocks to truncate from the message.

To test this capability, we used the PKCS7 format func-
tion with a blocksize of B = 16 bytes, and a two-block
CBC plaintext. (This corresponds to a ciphertext consist-
ing of three blocks, including the Initialization Vector.)

15In practice, truncation in CBC simply removes blocks from either
end of the ciphertext.

Initialization Vector Ciphertext Block 1 Ciphertext Block 2
Trunc
Len

Figure 4: A contiguous set of malleation queries made
by Delphinium during a simulated CBC attack. The
rightmost bits signal truncation (from left or right).

Delphinium generated an attack which took 3441 or-
acle queries for a random message with four bytes of
padding. This compares favorably to the Vaudenay at-
tack, which requires 3588 queries in expectation. Inter-
estingly, Delphinium settled on a more or less random
strategy of truncation. Where a human attacker would
focus on recovering the entire contents of one block be-
fore truncating and attacking the next block of plaintext,
Delphinium instead truncates more or less as it pleases:
in some queries it truncates the message and modifies
the Initialization vector to attack the first block. In other
queries it focuses on the second block. Figure 4 gives a
brief snapshot of this pattern of malleations discovered
by Delphinium. Despite this query efficiency (which we
seek to optimize, over wall-clock efficiency), the compute
time for this attack was almost a week of computation
on E5.

6 Related Work

CCA-2 and format oracle attacks. The literature con-
tains an abundance of works on chosen ciphertext and
format oracle attacks. Many works consider the prob-
lem of constructing and analyzing authenticated encryp-
tion modes [17, 61, 62], or analyzing deployed proto-
cols, e.g., [16]. Among many practical format oracle at-
tacks [10, 13, 36, 42, 45, 47, 57, 59, 60, 76], the Lucky13
attacks [5, 7] are notable since they use a noisy timing-
based side channel.

Automated discovery of cryptographic attacks. Auto-
mated attack discovery on systems has been considered
in the past. One line of work [26], [58] focuses on gener-
ating public input values that lead to maximum leakage
of secret input in Java programs where leakage is defined
in terms of channel capacity and shannon entropy. Un-
like our work, Pasareanu et al. [26] do not consider an
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adversary that makes adaptive queries based on results of
previous oracle replies. Both [26] and [58] assume leak-
age results from timing and memory usage side channels.

Using solvers for cryptographic tasks/model count-
ing. A wide variety of cryptographic use cases for the-
ory solvers have been considered in the literature. Soos
et al. [66] developed CryptoMiniSAT to recover state
from weak stream ciphers, an application also consid-
ered in [27]. Solvers have also been used against hash
functions [50], and to obtain cipher key schedules follow-
ing cold boot attacks [8]. There have been many model
counting techniques proposed in the past based on uni-
versal hash functions [37, 77]. However, many other
techniques have been proposed in the literature. Several
works propose sophisticated multi-query approach with
high accuracy [25, 65], resulting in the ApproxMC tool
we use in our experiments. Other works examine the
complexity of parity constraints [77], and optimize the
number of variables that must be constrained over to find
a satisfying assignment [41].

7 Conclusion

Our work leaves a number of open problems. In particu-
lar, we proposed several optimizations that we were not
able to implement in our tool, due to time and perfor-
mance constraints. Additionally, while we demonstrated
the viability of our model count optimization techniques
through empirical analysis, these techniques require the-
oretical attention. Our ideas may also be extensible in
many ways: for example, developing automated attacks
on protocols with side-channel leakage; on public-key en-
cryption; and on “leaky” searchable encryption schemes,
e.g., [38]. Most critically, a key contribution of this work
is that it poses new challenges for the solver research
community, which may result in improvements both to
general solver efficiency, as well as to the performance
of these attack tools.
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